Test 1

Fundamentals of Calculus I

Name:

Write your answers in the space provided. No calculators allowed. **Explain and justify your thought process.**

1. Find
$$\lim_{x \to -5} \frac{\pi x^2 - 25\pi}{x + 5}$$

2. Evaluate $\log_2(\log_3(\log_4 64))$

3. Explain the meaning of $\lim_{x \to a} f(x) = L$.

No justification necessary.

4. For
$$f(x) = x^2 + 2$$
 and $g(x) = x + 5$, find all solutions to $3x = g(f(x))$.

5. What are the minimum and maximum values of $x^2 + 10x + 77$?

6. Does the graph below depict $a(x) = 1/x^3$, $b(x) = 3^{-x}$, $c(x) = 3^{x^2}$, or d(x) = 1/x + 3?

True or False. No justification necessary.

7. _____ The horizontal asymptote of $\frac{4}{x-5} + 8$ is 8. 8. _____ If $\lim_{x \to c} f(x) = L$, then L = f(c).

9. _____ If L = h(a), then $\lim_{x \to a} h(x) = L$

10. _____ g(x) = 2x exhibits exponential growth, because $g(x) \to \infty$ as $x \to \infty$

Solutions

Write your answers in the space provided. No calculators allowed.

Explain and justify your thought process.

1. Find
$$\lim_{x \to -5} \frac{\pi x^2 - 25\pi}{x + 5}$$

This is equivalent to
 $\lim_{x \to -5} \frac{\pi (x + 5)(x - 5)}{x + 5} = \lim_{x \to -5} \pi (x - 5) = \pi (-5 - 5) = -10\pi,$

because the limit is concerned with x close to, but not equal to -5.

2. Evaluate $\log_2(\log_3(\log_4 64))$

These are nested functions. We feed $\log_4 64$ as an input into the next function \log_3 . So we have $\log_4 64=3$ $\log_3 3=1$

and finally $\log_2 1 = 0$. Therefore, the expression is equal to 0.

3. Explain the meaning of $\lim_{x \to a} f(x) = L$.

This means as x approaches, but does not equal a, f(x) gets close to L.

No justification necessary.

4. For $f(x) = x^2 + 2$ and g(x) = x + 5, find all solutions to 3x = g(f(x)). Interpreting the notation, we have

$$3x = g(x^2 + 2) = x^2 + 7.$$

So, $x^2-3x+7=0$. This a quadratic, so we can complete the square: $(x-1.5)^2+4.75=0$ Since our function is x^2 shifted up by 4.75, it can never equal 0. Therefore, there are no real solutions.

5. What are the minimum and maximum values of $x^2 + 10x + 77$? To find the min and max, we related the function to x^2 by completing the square:

$$x^2 + 10x + 77 = (x+5)^2 + 52$$

. Therefore, the minimum is 52 and the maximum is $\infty.$

6. Does the graph below depict $a(x) = 1/x^3$, $b(x) = 3^{-x}$, $c(x) = 3^{x^2}$, or d(x) = 1/x + 3?

The graph is the foundational function 1/x shifted up 3. Therefore, it's the graph of d(x).

True or False. No justification necessary.

- 7. True The horizontal asymptote of $\frac{4}{x-5} + 8$ is 8.
- 8. False If $\lim_{x\to c} f(x) = L$, then L = f(c).
- 9. False If L = h(a), then $\lim_{x \to a} h(x) = L$
- 10. False g(x) = 2x exhibits exponential growth, because $g(x) \to \infty$ as $x \to \infty$